
CluVis: A Framework for Cluster Computer Metadata Visualization

Ben Craig, Joseph Langley, Chris Waters*, T.J. Jankun-Kelly
†

Department of Computer Science and Engineering, Mississippi State University

Figure 1. Left, Topology view in focus. Right, Data view in focus right after the chart is added.

ABSTRACT

In this work, we describe and implement a framework for
visualizing cluster computer metrics and metadata. Interaction
methods for creating and modifying composite data charts are
specified in conjunction with a dual MoireGraph interface.

Keywords: information visualization, cluster visualization

1 INTRODUCTION

Clusters of computers are used as a low-cost solution for
handling large-scale computational tasks. While developing tasks
for such systems, it is important to know the performance
characteristics of the cluster so that sub-optimal properties can be
found and addressed. Key areas that could be optimized include
sources of bottlenecks, task loads, and scheduling. When working
with clusters, there are a limited number of ways you can obtain
information about the overall performance. A majority of these
methods are textual in nature and produce such a large volume of
heterogeneous data that it becomes impractical to analyze the data
without some form of post processing. In order to practically
analyze this information, a navigation scheme would be best.

Cluster computer visualizations are constructed in a hyperspace
with at least four axes: cluster node, data item, data transform, and
visual mapping. Typical cluster visualizations, such as Ganglia

[1] and RockSoft’s Cluster Top[3] only allow users to compare
similar cluster metrics to one another. This work presents
decomposes and organizes the hyperspace into a set of
hyperplanes better suited to human comprehension.

2 DATA COLLECTION

Data was collected using Ganglia, a free and open source
cluster metric collection and aggregation tool [1]. Ganglia
collects a wide range of cluster metrics from any number of
cluster nodes, including: CPU usage, memory usage, disk usage,
etc. Our system builds upon the Ganglia data collection by
organizing all of the metrics into files in a folder structure based
on the cluster topology; this reports the overall statistics of the
cluster. This topology includes the cluster summary information
that Ganglia creates as the main node for the cluster. The metrics
for each computer are stored in separate XML files. A metric
listing was hand generated that contains the path, metric name,
metric category, cluster node name, and the value range of the
metrics. Each of the metric XML files is stored in a round robin
archive format. This means that data for multiple time ranges is
stored, with the data resolution inversely proportional to the
length of the time period, resulting in some redundant data. In
order to get a continuous series of data, CluVis reads in the metric
XML, keeping only the highest resolution data for a given time
sample. Each metric XML file is assigned to one DataSeries, and
the DataSeries are pooled and shared for the entire application.

3 INTERFACE

We designed our interface in Python using the wxPython API
for the windows and widgets. The OpenGL API was used for
hardware rendering. The interface is divided into the visualization
window and the data chart construction panel.

Department of Computer Science and Engineering, Bagley

College of Engineering, Mississippi State University, MS

39762.

* crw7@msstate.edu
† tjk@acm.org

T.J. Jankun-Kelly
Craig et al. CluVis: A Framework for Cluster Computer Metadata Visualization. IEEE InfoVis 2005 Poster Compendium, 2005.

3.1 Visualization

The prevalent visual feature in CluVis is the usage of user-
created DataCharts (Figure 2). DataCharts are one or more
DataSeries rendered onto a texture. In our implementation, we
chose to have each DataSeries represented by a polygon filled
from the lower axis to the line generated from plotting the points
from the DataSeries. Multiple DataSeries rendered on top of each
other are blended additively, which allows the user to quickly
identify similar and dissimilar regions of the data. Any DataChart
with only one DataSeries will also render a labeled x/y axis. The
names of the DataSereis’ used to create the DataChart are
rendered to the texture for identification. The texture is then
cached and only regenerated when the DataSeries change.

Figure 2. An example DataChart

The visualization contains two MoireGraph views: one for the

cluster topology and the second for the current cluster data. The
two MoireGraphs, focus+context graph views [2], are positioned
one on top of the other. Each view has a white background and a
black border in order to prevent confusion between the two views.
When one view is in focus, it is transformed in such a way that it
takes up more screen space than the view not in focus. The
focused view is also the only view that is considered for the
interaction methods defined by the MoireGraph. The user
switches between the two views by clicking on the unfocused
view with the mouse, which is followed by a smooth animated
transition between the two focus states.

The topology view (Figure 1, left), positioned on the left side of
the visualization, represents the topology of the cluster, with each
node being a cluster computer. The nodes drawn in the topology
view display the same metrics as the focus of the data view. The
focus node on the topology view specifies the current domain of
the visualization.

The data view (Figure 1, right), positioned on the right side of
the visualization, displays one node for each set of metrics that
have been associated into a data chart. The nodes displayed in the
data view display the data from the domain specified by the focus
of the topology view. Nodes that display metrics that are in a
common category (CPU, Memory, Communication, Load, Disk)
are connected. This means that nodes that display more than one
category of metric are connected to two other nodes of both
categories. Connecting the nodes in this way creates a wider
range of connectivity in the underlying graph and allows the user
to identify regions of interest.

The window also contains a chart preview for chart
construction. This preview is positioned in the free space under

the unfocused MoireGraph view. The chart preview reflects the
current selections in the chart construction panel.

3.2 Chart Construction

The chart construction panel is used to specify which metrics to
use in a data chart. In the panel, the metrics are represented by
checkbox widgets. The checkboxes are grouped into categories,
which are defined in the metric listing. There are also three
buttons at the bottom of the panel: Add, delete, and clear. The
add button adds a node to the data view with the metrics currently
selected with the checkboxes. The delete button removes the
current focus node from the data view. The clear button resets all
of the checkboxes on the chart construction panel.

4 DISCUSSION AND CONCLUSIONS

CluVis allows cluster developers to analyze the performance of
cluster machines to gain insight as to where and why performance
bottlenecks are occurring. The data charts are rendered in such a
way that user can find trends among different metrics, even if the
metrics are of completely different categories. The dual graph
layout allows the user to analyze multiple machines at the same
time, which can help show if certain behavior is commonplace
across the cluster. The chart construction panel allows the user to
customize the visualization to their needs. These, combined with
the basis of the graph connectivity, allow the user to explore the
cluster’s activity.

CluVis can be used as a component in cluster performance
analysis. Other tools that drill down into specific performance
measures and/or other diagnostics are needed to obtain a full
picture of cluster utilization.

5 FUTURE WORK

Currently the chart construction only allows metrics to be
displayed or not displayed; other properties could be associated
with each metric. Future work could extend the chart maker to
allow the user to customize how the charts are drawn. One such
extension could be color pickers to choose which color to draw
the individual metrics with. A history bar could be added to store
snapshots of the two views. Opening the snapshot would load the
saved views into the visualization.

REFERENCES

[1] Ganglia, http://ganglia.sourceforge.net/. (current 28JUNE2005)

[2] T. J. Jankun-Kelly and Kwan-Liu Ma, “MoireGraphs: Radial

Focus+Context Visualization and Interaction for Graphs with Visual

Nodes,” Proc. 2003 IEEE Symposium on Information Visualization,

pp. 59–66, 2003.

[3] Rocks Cluster Distribution, http://www.rocksclusters.com/. (current

28JUNE2005)

